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Application of deformation mechanism maps 
to the study of high-temperature creep of a 
precipitate- free 25wt%Cr- 20wt%Ni 
austenitic stainless steel 

Y. T A K A H A S H I ,  T. Y A M A N E  
Department of Materials Science and Engineering, Osaka University, Suita 565, Japan 

Deformation mechanism maps for a precipitate-free 25 wt % Cr-20 wt % Ni austenitic 
stainless steel are introduced with normalized stress, reciprocal of homologous tempera- 
ture and normalized grain size as co-ordinate axes. The maps are plotted, using exper- 
imental results wherever possible rather than comparing constitutive strain-rate equations 
predicted by deformation mechanisms. The maps make it possible to systematically 
classify the complex creep behaviour of the stainless steel, so that transitions in creep 
behaviour with changes in stress, temperature and grain size are clearly revealed. It is 
indicated that, if the maps are prepared from the constitutive equations alone, they are 
not in agreement with the experimental results. 

1. Introduction 
It has been recognized that several deformation 
mechanisms contribute towards creep deformation 
of a polycrystalline solid, and each depend on 
stress, temperature, and material structure such as 
grain size. It is thus necessary in studies of high- 
temperature creep to identify the dominant 
mechanism under any particular experimental 
conditions. 

In 1965, the idea of a "creep diagram" was 
originally proposed by Weertman and Weertman 
[1, 21- The idea was developed by Ashby [3], who 
produced "deformation mechanism maps" for 
several pure metals and ceramics. Since then, 
various types of deformation mechanism maps 
have been produced by a number of authors, 
especially Langdon and Mohamed [4-11] ,  for the 
purpose of displaying information about creep 
behaviour more clearly. Now, it is widely accepted 
that the deformation mechanism maps are a 
simple but powerful tool for comprehending high- 
temperature creep behaviours which seem to be 
complicated. 

The steady-state creep in a 25 wt% Cr-20 wt% 
Ni austenitic stainless steel depends on stress, tem- 
perature and grain size [12-14].  It is, therefore, 
important to systematically classify creep behav- 
iours, constructing two- and three-dimensional 
deformation mechanism maps with the normalized 
stress (o/G), reciprocal of the homologous tem- 
perature (TIn~T) and the normalized grain size 
(d/b), as co-ordinate axes, where a is the applied 
stress, G is the shear modulus, T is the absolute 
temperature, Tm is the melting point of the 
material in Kelvin,* d is the mean grain diameter 
and b is the Burgers vector. The purpose of this 
paper is to gain some understanding of high- 
temperature creep of stainless steel using defor- 
mation mechanism maps, based, wherever possible, 
on our experimental results rather than on theo- 
retical predictions. 

2. Types of deformation mechanisms 
High-temperature creep can arise in at least four 
different ways [2-4,  14, 17-19] :  recovery- 
controlled creep; thermally-activated glide- 

*For Tm of the stainless steel, an absolute solidus temperature in the equilibrium diagram of the F e - C r - N i  system 
[15, 16] was adopted. 
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TABLE I Chemical composition (wt%) of a vacuum- 
melted stainless steel 

Cr Ni C Mn Si S P 

22.77 21.39 0.005 Nil 0 .02  0.009 0.004 

controlled creep; Coble creep and Nabarro- 
Herring creep. 

In recovery-controlled creep, the rate con- 
trolling process is "recovery" of the dislocation- 
substructure by the climb motion of dislocations 
[2, 17, 20]. This type of creep is widely observed 
in pure metals [18, 19]. The rate-controlling 
process may be thermally-activated "glide" of 
dislocations. This mechanism can be further 
subdivided into two classes: viscous glide, G1, 
and jerky glide, G2. Gz is controlled by jog- or 
solute-drag, so that volume- or solute-diffusion is 

required. G2 is exclusively limited by localized 
obstacles and does not necessarily require the 
aid of diffusion. G2 has been designated as 
"dislocation-glide" by Ashby [3], who suggests 
that it dominates in the normalized stress range 
from (0.5 ~ 1.0)x 10 -2 to (Orb~G), where orb is 
the theoretical shear strength for defectless flow, 
and nearly equal to (31/2/20)G. 

Stress-induced vacancy transport permits creep 
deformation, as well as conservative motion of 
dislocations. If the transport is predominantly 
along grain boundaries, deformation is called 
Coble creep [21]. When, instead, bulk-transport 
dominates, it is known as Nabarro-Herring creep 
[22, 23]. 

The strain rates, ~, predicted by these defor- 
mation mechanisms can be expressed, except in 
the case of dislocation glide, G 2 [3, 4, 6, 20], in 
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Figure 1 Stress dependence of 
the steady-state creep rates, ds. 
Coble creep (- - - -) and Nabarro- 
Herring creep (- -) are 
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the form 

e =  A~)-~Tb)(a/G)n(b/cOqexp(--~T),(1) 

where A is a dimensionless constant, Do is a fre- 
quency factor, k is Boltzman's constant, Qc is an 
activation energy for creep, R is the gas constant, 
and n and q are the exponents for the stress and 
the inverse grain size, respectively. 

If  d and T are constant, recovery-creep gives 
n = 3 to 5, in contrast with viscous-glide, G1, 
where n ~ 3  is established [19]. Recovery-creep 
and G1 are often called "power-law creep". Coble 
creep and Nabarro-Herring creep are linear 

functions o f  stress (n = 1) and are called "viscous 
creep". 

For power-law creep with T > 0 . 5 T m  and 
Nabarro-Herring creep, then Do exp (-- Qe/RT) = 
Dvo exp (-- Qv/RT) = Dr, where Dv is the volume 
diffusion coefficient with a pre-exponential con- 
stant, Dr0, and an activation energy, Qv. However,  
for Coble creep, Do exp ( - -Qc/RT)  = D u o  exp 
(-- Qb/RT) = DD, where D b is the grain-boundary 
diffusion coefficient with a pre-exponential con- 
stant, Dbo , and an activation energy, Qb-t 

With respect to the grain-size dependence o f  ~, 
Coble creep and Nabarro-Herring creep exhibit 
q = 3 and q = 2, respectively, and usually q ~ 0 is 

assumed for power-law creep. In practice, how- 
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tin this study, D v and D b approximate to the volume and the grain-boundary self-diffusion coefficients of Fe in the 
stainless steel, respectively. 
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Figure 4 Temperature dependence of the 
steady-state creep rates for R~, which 
are rearranged under the same conditions 
of a -- a c. 
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ever, power-law creep does depend on grain size 
[14, 2 5 - 2 6 ] .  This immediate ly  gives rise to a 

discrepancy between maps based on the consti- 

tutive equations for power-law creep and those 
based on experimental  data [ 3 - 1 1 ] .  I t  is, therefore, 

necessary to take the effect o f  grain size on power- 
law creep into consideration.  

3. Experimental procedure 
The material  used in this s tudy was vacuum-melted 
2 5 w t %  C r - 2 0 w t % N i  austenitic stainless steel, 
the composit ions of  which are shown in Table I. 
The experimental  procedures have been detailed 
in previous work [ 1 2 - 1 4 ] .  The test temperatures 

were (0.65 ~ 0.75)Tin, a range where carbide- 
precipitates and sigma-phase were absent. 

4. Experimental results 
Figs 1 to 3 show examples of  the dependence of  

the steady state creep rates, ds, on stress, grain 
size and temperature,  respectively. The power-law 

creep can be subdivided into three characteristics 
o f  R1, R2 and Ra.  R1 is observed for the fine- 
grained specimens (d  < 60/2m) and R2 and Ra for 

d >  100/am. It has been reported [14] that  these 
three creep regimes are individually recovery- 
controlled.  R~ is gradually displaced by Coble 
creep with decreasing stress, whereas R 3 is found 
to be superseded by  R2 at e "  10MPa, T =  1173K 
(e/G "" 2 x 10-4). The transition region from R3 to 
R2, t r (R2 ,  R3), is considered to be the field of  
viscous glide, G1, because n = 3 is established and 
the creep curve exhibits an inverse-type primary 

T A B L E I I Constitutive equations for creep deformation mechanisms and physical property values 

Creep Constitutive equation 

R1 

R~ 

R3 

G1 

G2 

Coble creep 

Nabarro- 
Herring creep 

[DvoGb\ [ G~4[b~ [ Qv "~ 
1.4X10 8 -  - -  - -  exp - - - -  

[DvoGb~lo\ s b 2 

,Ovo.,,o-oo,. 

where eo is an appropriate pre-exponential term, 
AF is the free energy necessary to overcome the 
obstacle and ef0 is the flow stress at 0 K. 

= 1 4 " - ~ \ ~ ] \ G J \ d ]  exp \--R--TI 
where ~ is the effective grain-boundary width. 

' = 14 " b ; ~ } \ G ] \ d /  e x p ( - - R ~ ) '  

where S2 is the atomic volume. 

Note: The equations for R1, R 2 and R 3 are based on our experimental results, but those of G 1 and G~ are 
probable ones [9, 19]. Those of Coble creep and Nabarro-Herring creep are theoretical [3]. 

Physical property values 

Dvo = 1.74 X 10 -4 m 2 sec -1 ~2 = 1.21 X 10 -29 m 3 

6Db0 = 8.30X10 -13m 3sec -~ b = 3.0X10 -1~ 

Qv = 285kJmo1-1 Tm = 1696K 

Qb = 180kJ mol-I 
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creep in tr(R2, R3) [12, 19]. In R3, although 
Qe > Qv is shown, Qe ~ Qv can be established by 
introducing the strain-arrest stress, oc (cL Fig. 4). 
q e has been defined iv_ previous work [13, 14]. R3 
is essentially independent of grain size [14]. It is 
considered that R3 is strongly associated with the 
formation of dislocation-substructure [14,25],  
The range of d from 60 to 100 #m can be regarded 
as the transition region from R1 to R3, tr (Rt ,  R3). 

5. The method of mapping 
3-'able II shows the constitutive equations for the 
creep deformation mechanisms which have been 

considered in this report. It also gives physical prop- 
erty values. Deformation mechanism maps were 
constructed by the following seven-step procedure. 

(1) A three-dimensional space with the co- 
ordinates, ((J/G), (TraIT) and (d/b) was prepared. 
The space was limited by letting (o/G) range from 
10 -7 to 10 ~ (TraIT) range from 1.0 to 2.0, and 
(d/b) range from 3.3 x 104 to 3.3 x 106 (compar- 
able to d --- 10 to 1000 pro). 

(2) Tile space was separated into two parts at 
(d/b) = 2.7 x lO s (d = 80/Ira). One of them was 
prepared to construct a map f o r d  5 60vm, and 
the other to construct a map for d >= lO0/am. 
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(3) In mapping for d < 60~tm; R~, Coble creep 
and Nabarro-Herring creep were initially con- 
sidered. It was assumed that, of these three, 
the mechanism which supplies the largest strain 
rate at a point, (o/G, Tm/T, d/b) is the dominant 
mechanism at that point. Domain-boundaries were 
obtained by equating pairs of the constitutive 
equations. 

(4) In mapping for d => 100/am; R2, R3, Coble 
creep and Nabarro-Herring creep were considered. 
The domains and the domain-boundaries were 
estimated in a similar manner to Ashby [3] but 
using the condition that R2 is displaced by R3 
above a critical value of (a/G) corresponding to 
tr (R2, R3). 

(5) The domain of dislocation-glide, G2, was 
empirically drawn, according to other deformation 
mechanism maps, for instance, maps for 18wt% 
Cr -8  wt % Ni stainless steels [27, 28]. 

(6) The two parts which had separately been 

mapped were unified into a three-dimensional 
diagram. 

(7) Two-dimensional maps were drawn as 
sections of the three-dimensional diagram. The 
shear modulus, G, is given by 

G = 8.3 x 1 0 1 ~  3.0 x 107 T. (2) 

Equation 2 was approximated as G=E/2(1 +u) 
assuming u =  1/3 and the same temperature 
dependence as Young's modulus, E, using the data 
of Nortetiffe [29]. 

6. A three-dimensional  map 
A three-dimensional map is shown in Fig. 5. Six 
different mechanisms are represented as domains 
(fields): dislocation-glide, G2; the three different 
recovery-creep regions, R1, R2 and R3; Coble 
creep; and Nabarro-Herring creep. The field of 
G1 is shown as tr(R2, R3). The unified domain 
with R1, R2 and R3 is similar, or may be compar- 
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able to that of dislocation creep which has already 
been presented by several authors [3-11,  27, 28]. 
This map makes it possible to identify the domi- 
nant mechanism during steady-state creep under 
any conditions of (o/G, TIn~T, d/b) and also 
identifies transitions of mechanism through 
domain-boundaries, for example, between Coble 
creep and Nabarro-Herring creep. It is represented 
as a "plane" parallel to the (u/G) axis but not to 
the (TIn~T) axis or the (d/b) axis. This means that 
the transition between Coble creep and Nabarro- 
Herring creep occurs with changes in temperature 
and grain size but not with changes in stress. 

When these maps are used to predict creep 
behaviour, it is important to recognize the possi- 
bility of changes in grain size during creep. Such 
changes can also be represented in the maps. Heat- 
treatment temperatures for each grain size are 
indicated at the top of the map in Fig. 5. The 
curve gives information about the grain growth 
during creep. It can be indicated in the tempera- 

ture range above the heat-treatment temperatures 
that crystal grains must grow during creep. 

The field of AABC in Fig. 5 represents the 
domain-boundary between Coble creep and R2, 
although the R2-domain seems to disappear. This 
delta-field results from tr (R2, R3) estimated with 
the experimental results at T = (0.65 to 0.75)T~. 
The strain rates in the delta-field are too small to 
precisely estimate tr (R2, R3), but it is considered 
that in the delta-field there exists a possibility of 
tr(Rz,  R3) expanding, so that, with increasing 
stress, Coble creep is gradually replaced by R3 
through R2 or G1. 

7 .  T w o - d i m e n s i o n a l  m a p s  

The three-dimensional map gives the overall 
picture of the dominant regions of the defor- 
mation mechanisms. Two-dimensional maps can 
also give a good deal of information about the 
creep behaviour of the stainless steel for specific 
cases. 
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7.1. A (o/G)-(d/b) diagram 
In Fig. 6, a (o/G)-(d/b) diagram at T = 0.7Tin is 
shown. The field surrounded by a dotted line has 
been examined. Solid points are experimental 
values of tr (Re, R3). It is suggested that tr (Re, R3) 
is comparable to the domain of viscous glide, G1. 
In the R2 domain, the rate of recovery is con- 
sidered so slow that the time necessary for viscous 
gliding of a dislocation may be negligible in 
discussing the rate-controlling process [30]. 

7.2. (o/G)-(Tm/T) diagrams 
Figs 7 to 9 show examples of (o/G)-(Trn/T) 
diagrams, together with contours of constant 
strain rates, ~. These contours have been drawn, 
assuming that ~ in each domain is contributed to 
only by the dominant mechanism. It appears from 
these contours that Coble creep for d > 160/lm 

is difficult to observe, because ~ < 10 -t~ sec -1 is 
not detectable. S:milarly, it is indicated that 
Nabarro-Herring creep can be observed only at 
temperatures just below T m. 

In Fig. 8, the R2 domain diminishes above 
Tm/T = 1.8, but this zone is comparable to a 
section of AABC in Fig. 5. It may be regarded 
as the expanded tr (Re, R3). 

7.3. (Tm/T)-(d/b) diagrams 
(Tm/T)-(d/b) diagrams in Fig. 10 give information 
on the transition of creep deformation mech- 
anisms with change in normalized stress, o/G. At 
o/G < 4.3 x 10 -5 (Fig. 10a), only vacancy creep 
such as CoNe aild Nabarro-Herring occurs. Coble 
creep dominates at low temperatures and fine 
grain sizes. When a/G is increased to 4.3 x 10 -s 
(Fig. 10b), recovery creep, Re, appears at high 
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temperatures and coarse grain sizes. Then, R1 
appears at o/G = 6.0 x 10 -s (Fig. 10c). When o/G 
is increased still more (Fig. 10d), Nabarro-Herring 
creep can no longer dominate, even if d/b and 
TraIT are changed over the full scales. At o/G = 
2.0 x 10 -4 (Fig. 10e), Ra appears at middle grain 
sizes. In the range of o/G above 1.8 x 10 -3, Cable 
creep vanishes from the map (Fig. 10t), and then 
recovery creep is dominant. The recovery creep has 
different characteristics, that is, R1 in d < 60 gm 
and R3 in d >  100gin. The division of Rt and R3 
is supported by the fact that the high-temperature 
creep is affected by the dislocation substructure 
such as sub-boundaries as well as by grain size [20, 
24, 25, 31, 32]. RI and R3 are gradually changed 
into dislocation-glide, G2, with increasing o/G. 
This transition region, tr (R, G2), may be under- 
stood as the field of so-called "glide-recovery 
creep" [33]. According to other studies [34, 35], 
in the range T < 0.6 Tin, tr (R, G2) is let down to 
o/G~--2.0xlO -3. Also, the recovery creep at 

T < 0.6 Tm may be controlled by dislocation-core 
diffusion. 

In this report, it has been naturally assumed 
that the experimental results in T = ( 0 . 6 5  
0.75)Tin can be successful all over the range, by 
using (o/G), (TraIT) and (d/b) scales [1-3] .  It 
should be kept in mind that the maps are limited 
to the steady-state flow, and time-dependent 
effects are not included, except for the grain- 
growth. 

8. Discussion 
The construction of the maps largely depends on 
our experimental data. If the construction is only 
based on the comparison of the strain rates, the 
maps would be in contradiction with the exper- 
imental results, for instance, R1 could be compared 
with R2. 

Now, it is supposed that R1 and R2 indepen- 
dently contribute to the total creep strain rate 
at any points, (o/G, TIn~T, d/b). In the field where 
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t.r.( R1, R 2 ) 

CoNe c r e e p ~  

N~rbr?nrrg~ / /  

2.01 . . . . . . .  7 . . . .  ~'r"l . . . . . . .  "' . . . . . . . .  ' I  _-2.ox,C f> o 

1"8I Cobte ~ t'r'(R,,R,) 4 ~ =(1"8~5"0)"11~~ 

"t cre"//  . l.[ 

1 . 0  ' ' ' 5 10 10 G 10' 10' 
d/b 

Figure 10 (Tm/T)-(d/b) dia- 
grams: (a) a/G < 4.3 X i0 -s ; 
(b) o/G = 4,3 X 10 -s; (c) a/G = 
6.0 x 10 -s ; (d) o/G = 1.0 X 
10 -4 ; (e) c~/G = 2.0 X 10 -4 ; 
(f) a/G = (1.8 to 5.0) X 10 -3. 

the strain rate, el ,  of  R1 is larger than that, e2, of  
R2, the following inequality is necessary to be 
established. 

~ ->- 4 .  (3) 

From the constitutive equations listed in Table II, 

log (o/G) < log (d/b) -- 10.12. (4) 

According to this inequality, it is impossible for 
the Rl domain shown in Fig. 5 to exist. For 
example, in Fig. 5, a point of  (a/G, TIn~T, d/b) = 
(5 x 10 -4, 1.43, 1.2 x 10s)% does not satisfy the 
inequality in Equation 4. The creep behaviour 
ascribed to RI can, however, be observed under 
the same condition (cf. Figs 1 to 3). It is, there- 

fore, found that R1 and R2 are not independent, 
but only alternative mechanisms to each other, as 
likely as R1 and R3. However, vacancy creep with- 
out the conservative motion of  a dislocation can be 
expected to be independent of R1, R2 and R3. It 
is also considered that Coble creep and Nabar ro-  
Herring creep are independent of  each other, since 
they are obviously different in the path of  the 
transport. There remains a problem as to vacancy 
creep: Bingham behaviour (threshold stress) [36, 
37]. I f  this problem is taken into consideration, 
it is expected that the maps will aid classification 
of  the high-temperature creep behaviour o f  stainless 
steel still more. 

SThis condition is equivalent to T = 1173 K, a = 25 MPa and d = 40#m. 
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9. Conclusions 
(1)The high-temperature creep behaviour of a 
precipitate-free 25 wt % Cr-20 wt % Ni austenitic 
stainless steel is broadly classified into seven 
groups: three characteristic recovery creeps of R1, 
R2 and Ra; two different thermally-activated 
creeps of G1 and G 2 ; Coble creep; and Nabarro- 
Herrin~ creep. 

(2)These  creep mechanisms are plotted as 

domains in a three-dimensional deformation mech- 

anism map with co-ordinates, (a/G), (TIn~T) and 
(d/b). 

(3) The three.dimensional map makes it possible 

not  only to easily recognize the dominant mech- 

anism under any conditions of  (o/G, TraIT, d/b), 
but also to predict the possibility of  the transition 

of  these mechanisms with change in stress, tem- 

perature and grain size. 

(4) It is necessary in mapping to take note of 

the grain-size effect on recovery creep. 

(5) The deformation mechanism maps should 

be plotted using experimental results wherever 

possible rather than comparing constitutive strain- 

rate equations. 
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